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In works dealing with applications of Chetaev’s method, the question of 

the converse of Routh’s theorem is considered [l, 21. When applied to 

the equations of motion in normal coordinates, one may prove instability 

theorems for systems which are gyroscopically constrained systems [3, 

4‘51. 

1. Suppose that 91, . . . , q, are independent Lagrangean coordinates 

of a certain holonomic conservative mechanical system, having con- 

straints which do not depend explicitly upon time. Let T be the kinetic 

energy, and U be the potential function of the system. Let us suppose 

that the coordinates q,+I, . , . , 4, (nt < n) are cyclic, in the sense that 

aL I aq, = 0 (a = m + 1, . . ,, n) 

where L = T t Cl is the Lagrangean of the system. The equations of motion 

of such a system 

d aL aL 
tarrj’ 

----_o 
aqj 

possess R - m first integrals 

aL t aqa’= p, 

where the pa are constants of integration. In the case under consider- 

ation, the Lagrangean equations, for the noncyclic coordinates, have 

the form [31 

d aR t+R 
dtagil --~==O (i = 1, . . ., m) R = L - x (la& (1.1) 

a 

The function R does not depend on the cyclic coordinates or on their 
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velocities; it has the form 

R = R, + R, + R, 

where R,, the perturbed potential function. does not depend on the non- 

cyclic velocities, R, is a linear form in the acyclic velocities, and 

R, is a positive definite quadratic form in the acyclic velocities. 

Suppose that, for certain values of Pa, the equations of motion (1.1) 

possess the particular solution q i = 0. This solution corresponds to a 

stationary motion in which a single cyclic coordinate qo has been 

altered. 

Let us suppose, without loss of generality, that for qi = 0 the func- 

tion R, has the value zero. In this manner, for fixed values of the Pa, 

the equations of the perturbed motion are equations (1.1). 

In view of Routh’s theorem [II, the stationary motion corresponding 

to a particular solution qi = 0 is stable, provided that the perturbed 

potential function R,, is a strict maximum. 

Under certain conditions, this theorem admits a converse. The equa- 

tions of motion (1.1) may be written in the form 

Wt d -- 
dt aqif (1.2) 

where the ri are the gyroscopic forces 

d aR1 aR1 
ri = - dt aqi’ 

_+-= 
aqi j=i 

gji (q1, . *‘a7 q,) Qj’ (gji = - gij; gii = ‘1 

1. Consider the gyroscopically unconstrained system, in which gij =O 

for i, j = 1, . . . , in, that is, ri = 0, in particular, this occurs when 

R, C 0. Then the equations of the perturbed motion becqme 

d aR’ aR* 
-7 dt aqi -----_o 

acli 

Nere, R* = R, t RO. that is, it has the same form as the equations 

of a perturbed motion in the neighborhood of an equilibrium position. 

If we suppose that 

pi = aR* 1 aa,', H* =-RR* i_;Ileq( 
i aqi 

then we obtain the canonical Hamilton’s equations for acyclic 
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coordinates 

clg, / dt = aH* / api, dpi / dt = - aH* / aq, (i = 1, . . ., m) 

Consider the Hamilton-Jacobi equation corresponding to (1.3) 

8W 
q1 ,..., qm; g, . . .,a4 

m 

If the complete integral of equation (1.4) is 

w = w (Ql, - . *, qm; a,, * . *I a,, h) 

then the momenta pi are given, in the perturbed motion, according 

Jacobi’s theorem, by the formulas 

pi = aw i aqi (i = 1, . . ., m) 

where as, h are arbitrary constants, for s = 2, . . . , m. 

(1.3) 

(1.4) 

to . 

In the case of equilibrium, Chetaev’ s theorem [21 is valid. When 

applied to the problem under consideration, this theorem may be formu- 

lated as follows. 

Theorem 1. If, for the isolated stationary motion, the function Ru, 

supposed to be an analytic function, is not a maximum, then the station- 

ary motion of the gyroscopically unconstrained system, qi = 0, is un- 

stable. 

2. Consider the equations of the perturbed motion, (1.1). Let us 

suppose that 

RI = 2 ‘i (q11 ’ . ‘9 Qm 1 9i ’ = ~ ci(0)q.‘+ =): ci(‘)qi’ + ~ ci(2)qi’ + Q1 
z 

i i i i 

E.(O) = ci (0, . . .) O), p = z qsqr 

where the term QI is of not less than 

may be written in the following form: 

d SF aR* 

----_==O dt aqi 

the fourth order. Equations (1.1) 

(i = 1, . . ., m) (1.5) 

s,* = f7 acicl) ac .(I) 
3 

il aqj aQi > 
qi’qj + 2 cit2)qi’ + Q1 = -$-F giy)qi’qj +x C(T)qi’ + Ql 

i il i 

Consequently, by Chetaev’s method [21, one may prove the following 
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theorem for gyroscopically constrained systems, and for sufficiently 
small (in absolute value) values of the variables pi, qi’ (i = 1,. . . .m). 

Theorem 2. If, for an isolated stationary motion, the function R 

assumed to be analytic, is not a maximum; Oio) and if the coefficients gij 
in the expansion of the function RI* are all zero, then the stationary 
motion is unstable. 

Indeed, in view of the hypotheses of the theorem, in an arbitrary 
domain R, > Ro* > 0, for any RO*, and corresponding to any point of the 
region C defined by the inequalities R, > 0 and q12 f . . . + qm2 < t, 

there is no movable singularity of the complete integral W; further, by 
a suitable choice of the initial conditions we obtain 

where o2 contains terms of order not less than the third order of small- 
ness, depending on the velocities qi ‘. 

Consequently, the function W satisfies all the hypotheses of 
Chetaev’s theorem on instability in the domain R, > R,* > 0 inside the 
region C. The assertion has thus been proved. 

2. Consider a gyroscopically constrained system in normal coordi- 
nates, and introduce the notation 

g; .= g$j (0, . . ., 0) (g$ = - g;{; gK = 0) 

0 

(bij = bii) 

The equations of the perturbed motion, (1.2), may be reduced to the 
form h.61 

where the Q; are holomorphic functions, containing terms of not less 
than the second order. 

It is known [41 that there exists a nonsingular linear transforma- 
tion with constant coefficient which reduces the first approximation to 
equations (2.1) to the form 

Xi” + -&;xit + hiXi = 0 (i = 1, . . .( n) (2.2) 
j 

where 1~. are normal coordinates, hi are the stability coefficients of 
Poincari independent of the gyroscopic forces, and gij* are constants 
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having properties similar to the g;:. 

Let us consider the case when some of the stability coefficients of 

Poincare, hi, are zero. 

Suppose that the skew symmetric matrix, whose determinant is formed 

from the gyroscopic terms gvcI*(v, v = 1, . . . , s), has the form 11 gvV* 11 s. 

Theorem 3. If, in equations (2.2), hk = 0 (k = 1, . . . . s < m), and 

the determinant of the skew symmetric matrix II gvCI* II; is different 
from zero so that the degree of instability is odd, then the stationary 

motion is unstable. 

Proof. Since for equations (2.2) among the roots of the characteristic 

equation one finds hk = 0, one must have 

A (h) = (bS) 

h g1,* * * * * g1s kg,: s+1 * * * k,,* 
gal* I . . . gz; k,: Sfl * * * b,:, 
. . . . . . . . . . . . . . 1 . . . . . . . . . . 

g* * Sl g,, * . * h k * s. s+1 * * * %L; 
* * * 

gst1,1 gs+1,2 - * * gst1.s AZ + h,,, * - * Q?,;,,, 
. . . . . . . . . . . . 

* * * 
g ml g m2 -. * &s 

. . . . . . . . . . . . . 

kg,: s+l . . . h2 + hm 

Hence, the expansion of equation A(A ) = 0 may be written in the form 

A (Q = (A”) (x2- - ,l~2m-s-1 + . . . -jr (-1)2”-sU,) = 0 

where the constant erm is 

0 L&2* . . * g,: 

(- Ij2~‘-s~n~ = (h,+l . . . h,) gzl* 0 * . * g2’, . . . . . . . . . . * 
gs, g,; . . . 0 

It is known [41 that when the determinant of the skew symmetric 

matrix II gvp* 11~ is not zero, it must be positive, and thus s must be 

even. 

Thus, in view of the hypotheses of the theorem, the product of the 

remaining 2m - s roots, an, must be negative. Thus, at least one of the 

non-zero characteristic roots must be positive. 

Therefore, in the case under consideration, in view of Liapunov’s 
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theorem, the first approximation to the unperturbed motion of equation 

(2.1) must be unstable. 

The theorem is proved. 

Note 1. For an isolated position of equilibrium, Chetaev [31 proved 

a theorem on the instability of mechanical systems which are acted upon 

by potential and gyroscopic forces. This theorem may be considered as a 

certain sort of converse of Routh’s theorem, and may be formulated as 

follows. 

If, for equation (2.2). all hi are different from zero, and the 

degree of instability is odd, then the stationary motion is unstable. 

Note 2. In 17, Section 51, a theorem on the instability of the sta- 

tionary motion is proved under the hypothesis that 

0 
I 

t 

a r w 
api aqlm' . . , aqmmk > 

=o (*I 

for arbitrary mI f rnZ -I- . . . + mk > 0 and i <k, and that the function 

w1* which depends only on the variations of the coordinates, is a homo- 

geneous function. 

If (*) holds. then the equations of the perturbed motion become 

where the Eij(<I, . . ., Gk) vanish when all the $1, . . .I gk are zero; it 

is readily seen that this case corresponds to the case in which RI = 0, 

that is to say that the system of equations of the perturbed motion is 

a gyroscopically unconstrained system. 

On the other hand, the theorems on the instability of the stationary 

motion given by us (see Theorems 1 and 2 above) hold under more general 

hypotheses. 

Note 3. It is to be noticed that [3] contains an attempt to prove a 

theorem for gyroscopic systems, under the hypotheses that 

2) the velocities ?~l, . . . . q, are constrained by the relations 

Pik”rlk = 0 (i = 1, . . ,, 2p; k = 1, . . ., s) 

However, the author does not prove the inequality (1). Besides, he 
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does not even prove that when the constraints (2) are added, the differ- 

ential equations of motion remain unchanged. In the absence of proofs 
of these two assertions, the theorem of [81 must be regarded as without 

proof. 

In conclusion, the author thanks V.V. Rumiantsev for attention given 

to this paper. 
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